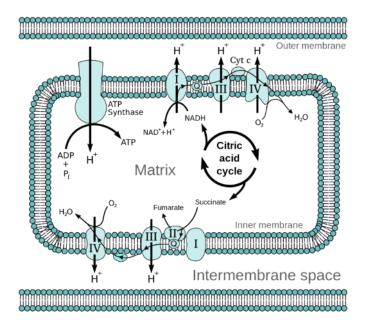


To My Best Friends and Colleagues

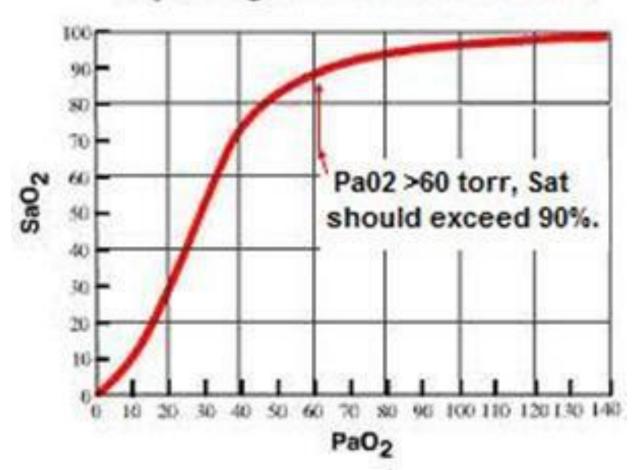

We Beat Corona
Together

Why oxygen is required for survival?

Oxidative phosphorylation

►Glucose + O2 → CO2 +H2O + 38 ATP

Basics


- Anoxia. No oxygen availability in tissues
- Hypoxia. Lack of oxygen availability in tissues
- ► Hypoxemia. Lack of oxygen in the blood
- ► FiO2 (Fraction of O2 in Inspired gas) 21%
- ▶ PaO2?
- ▶ SaO2?

FiO2

- 1 L\min=24%
- 2 L\min=28%
- 3 L\min=32%
- 4 L\min=36%
- 5 L\min=40%
- 6 L\min=44%

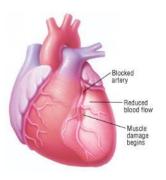
PaO₂/SaO₂

OxyHemoglobin Dissociation Curve

What is O2 Therapy?

Oxygen therapy is the administration of oxygen at concentrations greater than that in room air to treat or prevent hypoxia.

- Oxygen should be regarded as a drug (BNF 2016).
- ► Oxygen <u>must be prescribed</u> in all situations (except for the immediate management of critical illness in accordance with BTS guidelines) (NPSA Oct 2009).
- ▶ If abused it can cause complication.


Few important question:

- ▶ What are the indications for O2 therapy?
- ► How to administer optimally?
- ▶ What are the hazard?

Clinical goal of O2 therapy

- ►Treat hypoxia
- Decrease work of breathing
- Decrease myocardial work

Types of hypoxia

- Hypoxic hypoxia
- ► Anemic Hypoxia
- ► Stagnant hypoxia
- ► Histotoxic hypoxia

Benefit of O2 Therapy in Hypoxia

Types of hypoxia	Benefit
Hypoxic hypoxia	+++
Anemic hypoxia	+
Stagnant hypoxia	+
Histotoxic hypoxia	-

Indication for O2 Therapy

- Hypoxia when PaO2 comes down to 60mmHg
- Normoxic hypoxia like low cardiac output state, anemia, CO Poisoning
- Traped gases like obstruction, pneumoencephalus
- Special situation like anasthesia

Clinical Presentation

Effect of hypoxia

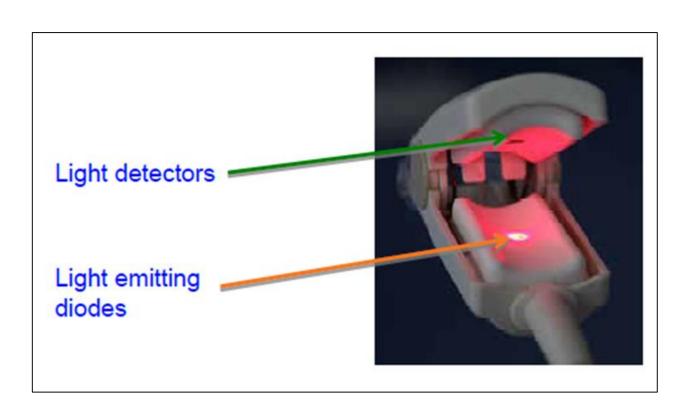
Acute hypoxia:

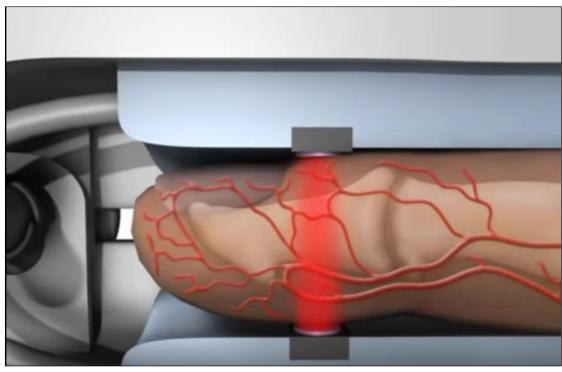
- Restlessness
- Disorientation, confusion
- In-coordination, impaired judgment
- Hyperventilation air hunger
- ► Circulatory changes (tachycardia → brady)

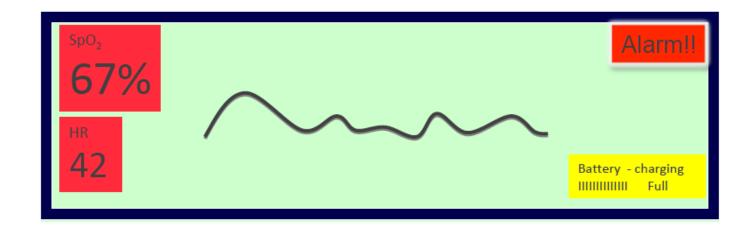
Chronic hypoxia:

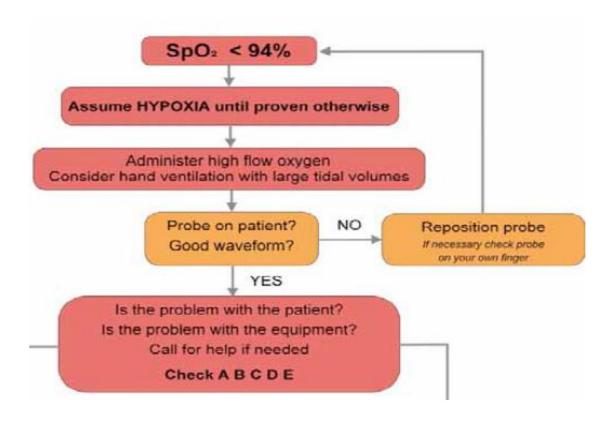
- ► Fatique, drowsiness,
- Intentiveness, aphaty, deleyed reaction time

Assessment of need


- Presence of clinical indicators
- Measurement of inadequate oxygen saturation
 - ► Arterial blood gas
 - **▶** Pulse oximetry

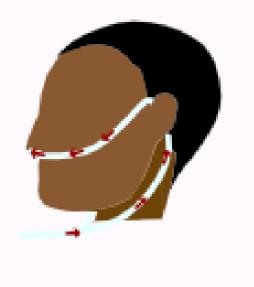






What do you notice about this oximeter?

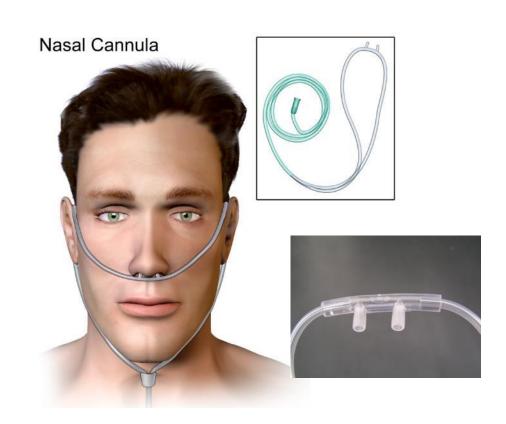
O₂ Delivery Systems


Low Flow Device

Example: Nasal Cannula

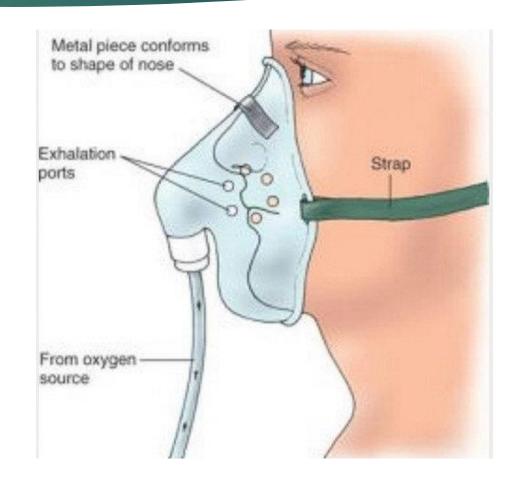
High Flow Device

Example: High Flow Nasal Cannula

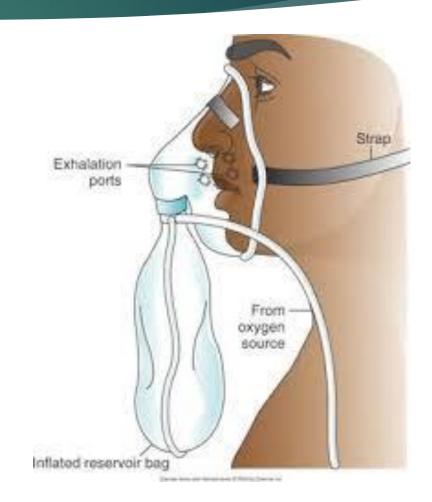

Oxygen Delivery

O₂ Delivery Systems

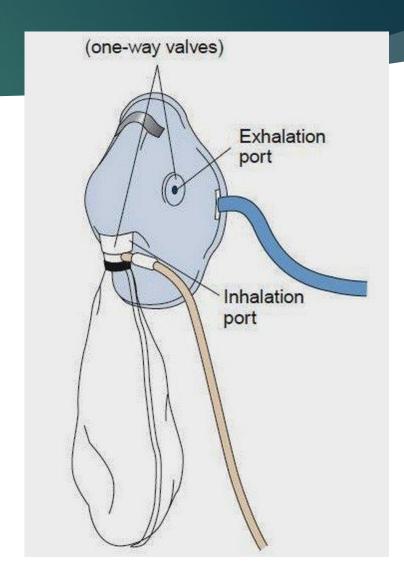
- Low flow systems
 - Contribute partially to inspired gas client breathes
 - Ex: nasal cannula, simple mask, non-re breather mask, rebreather mask
- High flow systems
 - Deliver specific and constant percent of oxygen independent of client's breathing
 - Ex: Venturi mask, High flow nasal canula, T-piece


Nasal canulla

- ▶ The prongs protrude 1 cm into nares
- Used for low concentrations of Oxygen 24-44% at 1-6L/min.
- Patient are able to talk and eat with oxygen in place
- May cause irritation to the nasal and pharyngeal mucosa
- ▶ If oxygen flow rates are above 4 L/min variable FiO2


Simple face mask

- Client exhales through ports on sides of mask
- Air entrained through ports if O2 flow through dos not meet peak inspiratory flow
- > It delivers 35% to 60% oxygen at 6-10 L/min.
- Flow must be at least 5 L/min to avoid CO₂ build up and resistance to breathing
- Potential for skin breakdown due to pressure and moisture
- Unconfortable while eating or talking. Obstruct coughing.


Rebreather Mask

- > It is used to deliver oxygen concentrations up to 80% at 8-12L/m.
- > 02 directed into reservoir
- > Insp:draw gas from bag & room air
- Exp: first 1/3 of exhaled gas goes into bag (dead space)
- Dead space gas mixes with 'new' O2 going into bag
- Bag should remain at least 1/3 ful during inspiration

Nonrebreather Mask

- Have 2 one-way valves at exhalation ports and bag
- This mask provides the highest concentration of oxygen (95-100%) at 10-15L/min.
- ▶ Client can only inhale from reservoir bag
- ▶ Velve prevents exhaled gas flow into reservoir bag. Velve over exhalation ports prevents air entrainment.
- ▶ Bag must remain inflated at all times
- ► For Critical illness / Trauma patients, Postcardiac or respiratory arrest
- ▶ Effective for short term treatment

Estimating FiO₂

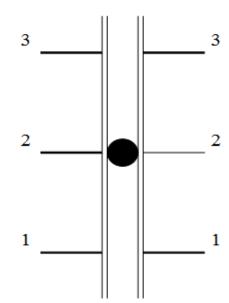
O ₂ Flow rate	FiO ₂	
Nasal cannula		
1	0.24	
2	0.28	
3	0.32	
4	0.36	
5	0.4	
6	0.44	

FiO ₂	
Oxygen mask	
0.4	
0.5	
0.6	

O ₂ Flow rate	FiO ₂	
Mask with reservoir		
6	0.6	
7	0.7	
8	0.8	
9	0.80+	
10	0.80+	

Venturi or fixed performance masks

- It is high flow concentration of oxygen.
- Oxygen from 24 60% At liters flow of 4 to 15 L/min.
- Aims to deliver constant and most precise oxygen concentration within and between breaths.
- With TACHYPNOEA (RR >30/min) the oxygen flow should be increased by 50% - see next slide
- Increasing flow does not increase oxygen concentration, it is a fixed dose device
- Good device for patients with raised C02 (patients with a target of 88-92%)



Oxygen flow meter

The centre of the ball indicates the correct flow rate.

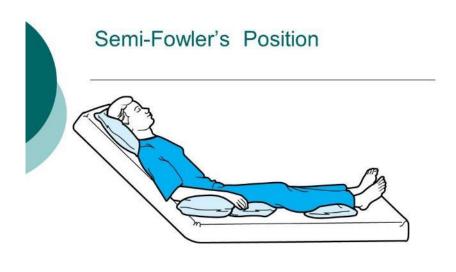
The ball must be **centred** on the line.

This diagram illustrates the correct setting of the flow meter to deliver a flow of 2 litres per minute.

Hazard of O2 Therapy

- Drying of mucous membrane
- Depression of ventilation in COPD
- Reversal of compensatory hypoxic vasoconstriction
- Atelectasis due to absorption collapse
- ▶ O2 toxicity

- \blacktriangleright My SpO₂ is < 90%, what next?
 - □ Is the pulse oximeter working/accurate
 - Do I have a good signal?
 - □ Heart rate plus/minus?
 - Is there adequate perfusion at the probe site?
 - Can the probe be repositioned?
 - Do other vital signs or clinical manifestations give evidence of hypoxemia?


- · Check my source!
 - Ensure the O2 delivery device is attached to oxygen not medical air.
 - Follow tubing back to source and ensure patency
 - Are all connections tight?

- Is the flow set high enough?
 - All nebs especially high flow large volume nebs need to be run at the highest rate.
 - Turn flow meter to maximum for large volume nebs.

- Reposition patient.
 - Avoid laying patient flat on back.
 - Raise head of bed.
 - Encourage deep breathing/coughing

- Listen to chest.
 - Wheezing?
 - Do they need a bronchodilator?
 - Crackles?
 - Encourage deep breathing/cough.
 - Are they fluid overloaded?

- Can I improve the mechanics of breathing?
 - Patient position
 - Pursed lip breathing
 - Abdominal breathing.
 - Anxiety relief?

Positioning patients

Evaluation

- Breathing pattern regular and at normal rate.
- pink color in nail beds, lips, conjunctiva of eyes.
- No confusion, disorientation, difficulty with cognition.
- Arterial oxygen concentration or hemoglobin
- Oxygen saturation within normal limits.

►Thank you

